



## Characterization of particles in the gas exchange system of DI/SI engines

Arun Prasath Karuppasamy

Supervisors: Anders Christiansen Erlandsson, Ola Stenlåås

11.10.2018, CCGEx - Research Day



CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>



#### **Particles Emissions and Health**



Giechaskiel, B., Manfredi, U., and Martini, G., "Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey," SAE Int. J. Fuels Lubr. 7(3):950-964, 2014, https://doi.org/10.4271/2014-01-2834.



#### **Particles Emissions and Health**



Kittelson, D., Watts, W., Johnson, J., Rowntree, C. et al., "Driving Down On-Highway Particulate Emissions", SAE Technical Paper 2006-01-0916, 2006, doi:10.4271/2006-01-0916



#### **Particles Emissions and Health**



Giechaskiel, B., Schiefer, E., Schindler, W., Axmann, H. et al., "Overview of Soot Emission Measurements Instrumentation: From Smoke and Filter Mass to Particle Number", SAE 2013-01-0138



#### **Agglomeration Pipe (AP)**



Agglomeration: Process of combining particles to form larger particles













#### **Engine Operating Points**

| SI.<br>No. | Engine Speed<br>[rpm] | T <sub>exh</sub><br>[°C] | ṁ <sub>exh</sub><br>[g/s] | Remarks                   |
|------------|-----------------------|--------------------------|---------------------------|---------------------------|
| 1          | 1000                  | 300                      | 154                       | $\text{Constant} T_{exh}$ |
| 2          | 1300                  | 300                      | 241                       | $\text{Constant} T_{exh}$ |
| 3          | 1600                  | 300                      | 340                       | Constant T <sub>exh</sub> |
| 4          | 1900                  | 300                      | 425                       | Constant T <sub>exh</sub> |
| 5          | 2200                  | 300                      | 481                       | Constant T <sub>exh</sub> |
| 6          | 1100                  | 396                      | 250                       | Constant m <sub>exh</sub> |
| 7          | 1200                  | 350                      | 250                       | Constant m <sub>exh</sub> |
| 8          | 1300                  | 312                      | 250                       | Constant m <sub>exh</sub> |
| 9          | 1400                  | 274                      | 250                       | Constant m <sub>exh</sub> |
| 10         | 1500                  | 236                      | 250                       | Constant m <sub>exh</sub> |
| 11         | 1600                  | 201                      | 250                       | Constant m <sub>exh</sub> |





#### Setup with Adjustable Measuring Probe





- The SP case in comparison with the AP case shows that the AP behaves like the SP with regards to non-volatile PN reduction
- The grouping phenomenon observed in previous literatures with the AP might be due to three possibilities
  - The size range of most particles emitted are larger than 50nm. As grouping is noticed only after those sizes
  - The grouping particles in previous studies might have been mostly volatile particles. This study used particle measurement systems with evaporation tube as a volatile particle remover
  - The grouping might have been favoured by the increase in colder surface area of the AP. This was avoided in this study by using a double walled and insulated AP





# competence Center for Gas Exchange

### "Charging for the future"











CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>