

competence Center for Gas Exchange

"Charging for the future"

www.ccgex.kth.se

KTH ROYAL INSTITUTE OF TECHNOLOGY

CCGEx Research Days Program

11 and 12th of October 2018 Stockholm KTH

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Agenda – 12th October

Room Gladan, Brinellvägen 83

08:30 Kick-off the new program period by CCGEx Director- Anders Christiansen Erlandsson

09:00-10:15 New Research Areas, Projects, and Students

- i-COLD Mihai Mihaescu:
 - Compressor Response to upstream/downstream installation effects and perturbations Emelie Trigell, PhD Student
 - Aerodynamically generated noise of centrifugal compressors Experiments Post Doc (NN)
 - Non-linear system identification techniques for acoustic characterization of turbochargers under high level of pulsating flow excitation - *Marie Curie student* Niloofar Sayyad Khodashenas (4:th year) – Associated project
- i-HOT Mihai Mihaescu:
 - Turbocharger turbine efficiency in steady and pulsating inlet flows experiments Yushi Murai, PhD Student
 - Turbine performance optimization with focus on maximizing exergy transfer Roberto Mosca, PhD Student

10:15-10:45 **COFFEE**

10:45-12:00

- i-SYS Anders Christiansen Erlandsson:
 - Exergy losses in high efficiency charging Beichuan Hong, PhD Student
 - Engine charging and EAT interaction during transients Varun Venkataraman, PhD Student
 - Waste Heat Recovery in Pulsating Flows-New techniques Jianhua Zhou, Post-doc

12:00-13:00 LUNCH

13:00-14:00 IAB meets CCGEx leadership team

- Summary of impressions

14:00-15:00 Optional Lab Tour

Act now!

The report finds that limiting global warming to 1.5° C would require "rapid and far-reaching" transitions in land, energy, industry, buildings, transport, and cities. Global net human-caused emissions of carbon dioxide (CO₂) would need to fall by about 45 percent from 2010 levels by 2030, reaching 'net zero' around 2050. This means that any remaining emissions would need to be balanced by removing CO₂ from the air.

Be aware of consequences

Swedish reduction SCENARIO! Towards fossile free transport in SWEDEN

By 2030: 50% less energy consumption – How the?

Less energy required for propulsion

- Drag & rolling resistance, weight, regeneration Efficent energy production
- Highly efficient power train

Split 50% energy reduction into

- 25% less for proulsion (yellow star)
- 33% less for production (blue star)

Propulsion effciency <u>40% to 60% !!!</u>

KTH ROYAL INSTITUTE OF TECHNOLOGY • WWW.KTH.SE

Add renewables & electricity

Science & Environment

Four major cities move to ban vehicles by 2025

By Matt McGrath Environment correspondent

③ 2 December 2016 Science & Environment

Air quality in Paris has forced political leaders to take a hard stance on the u

All sales of new petrol and diesel cars will cease in the UK by 2040, under plans to tackle air pollution.

But with electric cars currently accounting for less than 1% of new sales, the switch will mean seismic changes, and gives rise to a host of pressing questions.

Why are petrol and diesel cars being banned?

Poor air quality is the "biggest environmental risk to public health in the UK" thought to be **linked to about 40,000 premature deaths a year** - the government says. While air pollution has been mostly falling, in many cities nitrogen oxideswhich form part of the discharge from car exhausts - regularly breach safe levels.

Diesel vehicles produce the overwhelming majority of nitrogen oxide gases coming from roadside sources.

The government was ordered by the courts to produce a new plan to tackle illegal levels of harmful pollutant nitrogen dioxide, a form of the nitrogen oxide pollutants emitted by vehicles.

CCGEx Kick-off period 2018-2021

How to achieve sustainable mobility or sustainable propulsion for transport?

Global warming – STOP – Fossil free 2050 Local emissions - ZERO Sustainable business – Better than competition?

Renewable fuels sources – BIO, SUN, WIND Well to wheel efficiency Cradel to grave CO2 Zero emissions Knowledge & understanding to engineer great products

Research focus 2018-2021

	Urban	Highway									
Light Duty	 Prioritized properties: "Emissions free" Silent Prioritized Technologies: Hybrid/ elektrified engine Electrification PZEV ICE 	 Prioritized properties: Energy efficiency CO2/GHG Prioritized Technologies: ICE Hybrid/ electrified engine Fossile free fuels 									
Heavy Duty	 Prioritized properties: "Emissions free" Silent Prioritized Technologies: Hybrid Plug-in hybrid Electrified road - hybrid 	 Prioritized properties: Energy efficiency CO2/GHG/NOx/PM Prioritized Technologies: ICE ICE Hybrid/ elektrified motor Fossile free fuels Electrified road - hybrid 									

CCGEx Targets & Goals 2018-2021

- □ Higher powertrain efficiency through:
 - Increased gas exchange and turbocharging efficiency
 - Higher charge pressure enabling efficient thermodynamic cycles (e.g. Miller)
 - Lower aerothermodynamic losses
 - Efficient and smarter EGR systems for optimized, diluted & cold combustion: smart EGR-turbocharger-Intercooling integration
 - Integrated waste heat recovery (WHR)
- Enhance hybridization potential for a better response & efficiency under transients
- Better methods for thermal handling and regulation of after-treatment systems
- □ Zero emissions during real use (RDE)
- □ Increased inlet pressure during transients for better response
- □ Enable transition to 100% renewable fuels in SI and CI engines

Program budget 2018-2021

CCGEX 2018-2021		Budget				
		B2018	B2019	B2020	B2021	Total
Cash						
КТН	kkr	1000) 1000	1000	1000	4000
Energimyndigheten	kkr	8550) 8550	8550	8550	34200
Scania	kkr	800) 800	800	800	3200
Volvo Cars	kkr	500	500	500	500	2000
Volvo GTT	kkr	800) 800	800	800	3200
Borg Warner	kkr	800) 800	800	800	3200
Wärtsilä	kkr	250) 250	250	250	1000
Other	kkr	0) (0	0	0
Kontant Summa		12700) 12700	12700	12700	50800
Inkind						KTH in-kind
КТН	kkr	9000	9000	9000	9000	36000
Energimyndigheten	kkr	-	-	-	-	-
Scania	kkr	900	900	900	900	
Volvo Cars	kkr	1200	1200	1200	1200	
Volvo GTT	kkr	900	900	900	900	
Borg Warner	kkr	900	900	900	900	
Wärtsilä	kkr	1500	1500	1500	1500	
Other	kkr	0	0 0	0	0	Industry in-kind
In-kind Summa		5400) 5400	5400	5400	21600
						(Grand total)
Distribution		2018	8 2019	2020	2021	
КТН	kkr	10000) 10000	10000	10000	40000
Energimyndighet	kkr	8550) 8550	8550	8550	34200
Industri	kkr	8550) 8550	8550	8550	34200
						108400

CCGEx Organization 2018-

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Research area & project interactions

- Improved reduced order models
- Detailed
 data/knowledge
- Accurate predictions
- New models for accoustics etc...

- Boundary conditions p,T,massflow(t)
- Pulse shapes pulsatile flow
- Installation effects
- Transients

Partner value proposition

- Core technology area in focus Gas exchange system
- Collaboration with state-of-art academic institution KTH
- Partnership possibilities with Volvo Cars, VOLVO, Wärtsilä Borg Warner & SCANIA
- Access to senior researchers/professors with deep knowledge
- Generation and transfer of knowledge with the potential to significantly impact turbo charging performance
- Results from 19 relevant projects with theoretical, simulation and experimental content
- Access to unique laboratory and calculation facilities
- High gearing on deployed funding 15:1
- Detailed studies & unsteady/transient phenomena

CCGEx project portfolio overview

Research Area		20	15			2016			2017				2018				2019				2020			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
i-COLD: Mihai Mihaescu																								
Bertrand Kerres, PhD student, ICE, EXP/1D										PhD														
Elias Sundström, PhD student, Mek, CFD					Lic							PhD												
Raimo Kabral, PhD student, MWL, EXP										PhD														
Asuka Pietroniro, Ind. PhD stud Volvo Cars, MWL/Mek, CFD/CAA															Lic									
Valeriu Dragan, Post-doc BW, Mek, CFD on non-ax	kisymn	netric d	liffuser	S																				
Compressor Response to upstream/downstream installation effects // Emelie					Trigell	, PhD s	tudent	, Mek,	CFD						NEW									
Aerodynamically generated noise of Centrifugal Compressors-Experiments (N					1WL, EX	XP)													NEW					-
																							\square	⊢
i-HOT: Mihai Mihaescu																								-
Ted Holmberg, PhD student, ICE, 1D/EXP										Lic							PhD							
Marcus Winroth, PhD student, Mek-CICERO, EXP										Lic								PhD						
Shyang Maw Lim, PhD student, Mek, CFD									Lic							PhD								-
Nicholas Anton, Ind. PhD stud Scania, ICE, 2D Aero	Design	I											Lic						PhD					
Turbine performance optimization with focus on n	naximi	zing exe	ergy tra	ansfer ,	// Robe	erto Mo	osca, P	hD stuc	dent, N	lek, CF	D/opti	mizatio	n		NEW									
Turbocharger turbine efficiency in steady and pulse	ating fl	ow: an	experi	menta	l invest	igation	// Yus	hi Mura	ai, PhD	studer	nt, Mek	k, EXP			NEW									
																							\square	<u> </u>
i-SYS: Anders Christiansen Erlandsson																								_
Ghulam Majal, PhD student, MWL/Mek, Numerics												Lic							PhD					-
Arun Prasath, PhD student, ICE, Exp														Lic							PhD			_
Mireia Altimira, Researcher, Mek, SCR																								
Zhe Zhang, modeling, Assoc. Project, MWL																				PhD				
Senthil Mahendar, PhD student (Volvo GTT), ICE, 1		Turbo													Lic							PhD		L
Sandhya Thantla, Assoc. Project, ICE															Lic							PhD		L
Engine, charging and EAT interaction during transients PhD student, ICE, EXP/				1D										NEW										
Exergy losses in high efficiency chargin systems, PhD student, ICE, EXP/1D															NEW									
Waste Heat Recovering in pulsating flows-new tech	nnique	s basec	l on Th	ermoa	coustic	s, MW	L, CSC,	EXP/1	D												NEW			

competence Center for Gas Exchange

"Charging for the future"

www.ccgex.kth.se