KTH ROYAL INSTITUTE OF TECHNOLOGY

Dynamic Exhaust Valve Flow 1-D Modelling during Blowdown Conditions

Ted Holmberg

GE

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

Project

□ Valve strategies and exhaust pulse utilization

□ 1-D GT-Power

□ Engine experiments

Valve flow coefficient

□ 1D flow: quasi-steady assumption

Simulation vs Experiments

QS valve flow over predicts the rate of cylinder emptying

 \Box C_F function of valve opening speed and initial cylinder pressure

GT-Power model

Replicate the experimental conditions

- □ Initial cylinder pressure
- □ Volumes and pipe dimensions

Model tuning

Flow multiplier (fraction of steady-flow C_F)

Influence of initial pressure reduces with valve speed
Influence of valve lift reduces with valve speed

Flow multiplier

At the same valve lift, the instantaneous pressure ratio is different for each test case

Flow multiplier model

GTP → Flow multiplier & instantaneous PR at a given lift
Plot all initial pressures together

Final model

Dependent on engine speed and pressure ratio

□ Origin point (x0, y0) = (1.89, 0.79)

Future Work

- Implementing flow multiplier model in a GT-Power engine model to investigate impact on performance
- Engine test to measure valve flow through fast cylinder pressure and exhaust port measurement

competence Center for Gas Exchange

"Charging for the future"

