Gas dynamics of exhaust valves

Marcus Winroth, Henrik Alfredsson
11.10.2018, CCGEx - Research days
Outline

- Previous experiments – steady state vs dynamic valve C_D measurements
- Gas dynamics during valve opening
 - New flow visualization setup
 - Principle of Schlieren visualization
 - Flow physics in the exhaust port

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se
Previous experiments
C_D for static and dynamic cases

$p_{0i} = 500$ kPa

Cylinder to back pressure ratio

Regime I

Regime II

\[\ell/d = 0.143 \]
Surface flow visualisation

Shock wave
Recirculation bubble

Regime I
Regime II

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se
Outline

- Previous experiments – steady state vs dynamic valve C_D measurements
- Gas dynamics during valve opening
 - New flow visualization setup
 - Principle of Schlieren visualization
 - Flow physics in the exhaust port
Dynamic setup

- Pressure inlet
- Temperature measurement
- Pressure measurements
- Outlet
- Optical access
- Linear motor
- Cylinder volume
- Flow direction
- Exhaust port
- Valve
- Linear transducer

30 degree slice of the full geometry

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se
Static setup

Flow inlet
Schlieren setup

- Refractive index
- Density
- Gladstone-Dale constant
- Focal length

\[n = 1 + K \rho \]

\[\frac{dn}{dy} < 0 \]

Light source

Iris

f_1

Lenses

f_2

Schlieren knife

Camera

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se
Pressure ratio

\[
\frac{p_{\text{cyl}}}{p_{\text{back}}} \quad \ell/d = 0.143
\]

- \(\ell/d = 0.114 \)
- \(\ell/d = 0.143 \)
- \(\ell/d = 0.171 \)
- \(\ell/d \approx 0.155 \)
- Dynamic valve

- 800 rpm
- 900 rpm
- 1100 rpm
- 1350 rpm

\[p_{\text{cyl}} \quad [\text{Pa}] \times 10^5 \]
Dynamic process (n = 1350 rpm)
Flow states in the dynamic process

Dynamic valve
\(\ell/d = 0.046928 \)

Dynamic valve
\(\ell/d = 0.18874 \)

Dynamic valve
\(\ell/d = 0.25558 \)

Subsonic Supersonic
Comparing dynamic & static operations

Dynamic
\[\ell/d = 0.154\]
\[\mu = 42.8^\circ\]
\[M = 1.47\]

Static

Regime I
\[\ell/d = 0.155\]
\[\mu = 52.1^\circ\]
\[M = 1.27\]

Regime II
\[\ell/d = 0.155\]
\[\mu = 32.1^\circ\]
\[M = 1.88\]

\[M = \frac{1}{\sin \mu}\]
Comparing dynamic & static operations

Dynamic
\[\ell/d = 0.154 \]
\[\mu = 42.8^\circ \]
\[M = 1.47 \]

Static

Regime I
\[\ell/d = 0.155 \]
\[\mu = 52.1^\circ \]
\[M = 1.27 \]

Regime II
\[\ell/d = 0.155 \]
\[\mu = 32.1^\circ \]
\[M = 1.88 \]

\[M = \frac{1}{\sin \mu} \]
Conclusions

- The exhaust port flow has three distinct flow states:
 A. Overexpanded jet with free boundaries (small l/d)
 B. Overexpanded wall bounded jet with one free boundary (medium l/d)
 C. Fully expanded flow terminating in a normal pseudo-shock (large l/d)
- The dynamic discharge process goes through flow states A - C, showing mainly a dependency on l/d.
- The steady flow process show a transition from flow state B. (regime I) to flow state C. (regime II) (function of cylinder pressure) at lower l/d compared to the dynamic process.
- The characteristics of the state B jet (shock pattern, shape, Mach number) differs between dynamic and static operations.
Competence Center for Gas Exchange

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se