

Control of particle agglomeration with relevance to after-treatment gas processes

Ghulam Mustafa Majal 11.10.2018, CCGEx – Research Day

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Outline

Scope

Highlights of the CFD studyFuture plans

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Scope of the study

- (Why?)Reduce the number of particles in the internal combustion engine(ICE) exhaust gases.
- (How?)Using flow and acoustic forcing to enhance particle agglomeration.
- (Insight)Perform numerical studies to study particle behavior under pulsatile flow conditions. Make comparison against measurements on an actual engine exhaust system.
- (Goal)Utilize the insight to help the industry develop a suitable prototype that can be used as an after treatment device.

Agglomeration Concept

3D CFD Setup

Region	Boundary Condition	•
Inlet	Velocity Inlet $(U_0 = 80m/s)$	•
Outlet	Pressure Outlet(0 Pa)	•
Walls	NoSlip	•

- $D_{max} \in \{65mm, 85mm\}$. (Motivated by Steady State RANS).
 - $\lambda = 120mm$. (Motivated by 1D model).

$$Re_{Dmin} = 2.55 \times 1e5$$

• Methodology being utilized is DES: RANS(SST $k - \omega$) and SGS (Smagorinsky).

Third Order MUSCL convection scheme.

- Second Order Implicit temporal scheme. 5
- Max time step 1e 6s (Co < 1).

Normalized time averaged streamwise velocity

□Assymmetry in the profiles for $D_{max} = 85mm$ found , across planes of maximum cross sectional area.

Turbulent Kinetic Energy

□Higher TKE found for $D_{max} = 85mm$

y z x

Recirculation Regions

 $D_{max} = 85mm$ across the

xyPlane: z = 0

 \Box Larger recirculation regions found for $D_{max} = 85 mm$

Frequency spectrum for tangential components of velocity at probe points

10²

 10^{2}

VETENSKAP OCH KONST

5

4

3

2

1

0

5

Ω

 $PSD(m^2/s)$

 $PSD(m^2/s)$

- Four frequencies identified: (3.3Hz,10.02Hz, 13.3Hz and 16.7Hz).
- Corresponding length scales $(l_1 = 0.12m)$, $(l_2 = 1m)$ and $(l_2 = 0.05m)$.
- Corresponding velocity scales $(u_1 = 0.3m/s)$, $(u_2 = 9m/s)$ and $(u_3 = 0.64m/s)$.

Particle Injection

- Simple test case of monodisperse particles with $D_p = 900nm$. Stokes number $\sim 0(10^{-4})$
- One way coupling with no particle-particle interaction using a Lagrangian approach.
- Three different injection locations are tested.
- Particles injected in the first time step only in these test cases.
- Drag force and Pressure gradient force are included.

Centerline Injection

Cross stream and spanwise injection

- Assymetry observed for the case of $D_{max} = 85mm$.
- Larger Recirculation regions and turbulent kinetic energy observed for this case as well.

Future plans

- Analyze instability mechanisms for the flow.
- Include particle-particle interaction inside a polydisperse scenario.
- Consider pulsatile flow.

Thank you for your attention!

competence Center for Gas Exchange

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Mesh Details

Hexahedral mesh with ~ 12.5 mil cells.

Turbulent Kinetic Energy

