KTH ROYAL INSTITUTE OF TECHNOLOGY

Heavy Duty DISI Gas Exchange Processes with Renewable Fuels

Senthil Krishnan Mahendar

08 September 2017, CCGEx – Research Day

CCGEx at the Royal Institute of Technology (KTH) ${\scriptstyle \bullet}$ www.ccgex.kth.se

Content

- Motivation
- Objective
- □ Base Engine and Test data
- □ Theory and Method Three pressure analysis
- Results
- □ Future work

Motivation HD SI engines with renewable fuels

- Markets
 Renewable source of fuel and reduced imports
- **Diesel Power Density?**
- Direct Injection Spark Ignition
 Improved Efficiency and lower knock tendency
- λ = 1 operation
 Simple after-treatment
 Reduced capital costs for fleet owners

Near Zero Emissions

Oxygenated Fuels
 Lower Particulate Emissions

Objective

- 1. Accuracy of 1d combustion / knock models
- 2. Experiments: derive the effect of fuel and EGR
- 3. Model validation for HD engine
- 4. Gas exchange system architecture advantages and limitations

Base Engine

V8 300 CE	Engine Designation
5.3L in V8 config	Displacement
96 mm	Bore
92 mm	Stroke
11	Compression ratio
Direct injection	Fuel Injection
Single Camshaft with phasing 2 valves per cylinder	Valvetrain
90 deg 1-8-7-2-6-5-4-3	Firing interval

Volvo Penta SI Engine

Test Data

CA data Indicom (avg of 50 cycles)

- Intake and exhaust pressure
- Cylinder pressure

Time avg data

- Critical pressures and temperatures
- Emissions post catalytic converter
- Lambda
- Fuel flow
- Air flow calculated

Predictive Combustion Model

Variable	Dependents	Calibration constants
Mass of entrained unburned mixture	Flame areaLaminar flame speedTurbulent flame speed	
Laminar flame speed	 Equivalence ratio Temperature Pressure Dilution 	1. Dilution exponent multiplier
Turbulent flame speed	Turbulence intensityFlame radius	 Flame speed multiplier Kernel growth multiplier
Taylor microscale	Integral length scaleTurbulent Reynolds number	4. Length scale multiplier

Method – Three pressure analysis

- Imposed pressure curves
- 22 operating points across the map
- Fixed combustion efficiency (95%)

Results

Based on 22 calibration points and 12 verification points

Summary

- Model fit has improved in the last iteration
- Model fit is good at both calibration and test points
- Peak pressure error cause unknown at this moment

Next Step:

- Fit a knock model for KLSA prediction at current spark advance levels (Tuning point will be selected based on low speed and high residual level)
- CCV model to be tuned to fit COV-IMEP data (Cyl 8) based on 50 cycles

Knock limited BMEP decreases with increase in bore diameter

Residence time for end gas increases

- Important to model the effect of EGR and fuel on knock behavior
- How much change in the calibration constants would be needed to fit engines with larger bore diameters? Is the turbulence model the most critical difference?

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>