

Valve Strategies and Exhaust Pulse Utilization

Ted Holmberg

Supervisors: Andreas Cronhjort, Anders C. Erlandsson

07.09.2017, CCGEx – Research Day

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Outline

- Project
- **Earlier Work**
- □ Work in Progress (WIP)
- Near-Future Plans

Project

Increase exhaust energy utilization in a turbocharged engine by varying the exhaust valve profile

- □ 1→2: Cylinder → Exhaust Port
- □ $2 \rightarrow 3$: Exhaust Port \rightarrow Turbine Inlet
- □ $3 \rightarrow 4$: Turbine In \rightarrow Compressor Out

Lower Pumping loss → Improved Engine Efficiency

Earlier Work

- $\Box Cylinder \rightarrow Exhaust Port$
- Exhaust Valve: Flow coefficients in 1-D
- □ Influence of pressure ratio on flow coefficients

□ SAE paper: 2017-01-0530

WIP: Background

 \Box Turbine Inlet \rightarrow Compressor Outlet

Evaluate turbine efficiency for different exhaust pulse shapes

Conventional method

- Pulsating-flow Gas Stand
- □ Steady-flow Gas Stand \rightarrow Turbine Map \rightarrow 1-D simulation software

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

WIP: New Approach

□ Engine as a gas generator

- Engine speed constant
- Extracted power constant (boost pressure) / Injected fuel constant

Modify pulse shape by varying exhaust manifold volume

Hypothesis: Turbine efficiency decreases with increasing pulse amplitude

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

WIP: Experimental setup

□ Volumes 4x4liter, Original Exhaust Manifold ~2liter

Scania DC13

🖵 GT4594

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

WIP: Measurement setup

□ Fast sampling system (200kHz)

WIP: Preliminary Results

Abstract submitted to SAE WCX18

Near-Future Plans

- □ Sensitivity study in GT-Power of pressure dependent C_F
- Continuation from first experimental campaign
- 2 Days a week at Scania until New Year

Thank you for your attention!

Questions?

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>