

competence Center for Gas Exchange

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Heavy Duty DISI Gas Exchange Processes with Alternative Fuels

Senthil Krishnan Mahendar

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

Motivation

Alcohol Fuels in HD Engines

o Markets

Renewable source of fuel and reduced imports

Diesel Power Density

Direct Injection Spark Ignition
Improved Efficiency and lower knock tendency

Near Zero Emissions -

λ = 1 operation
Simple after-treatment
Reduced capital costs for fleet owners

Oxy Fuel
Lower Particulate Emissions

Motivation

Alcohol fuels

- High octane less knocking tendency (+)
- High latent heat of vaporization lower fuel enrichment (+)
- Lower stoichiometric A/F ratio <u>higher throttling</u> (-)

Improvement of throttling is key for alcohol fuelled engine's efficiency

Limits of SI Engine Efficiency (Adapted from BorgWarner Knowledge Library Publication (2015))

Research Questions

What is the attainable load and efficiency in DISI operation (compared to diesel)? What limits performance/emissions

How sensitive is alcohol combustion to residual gases (cooled and uncooled)?

[Comparison of knock and misfire limits with gasoline and projection of gas exchange system architecture for alcohols.]

With this combustion process and limits – How can gas exchange system concepts be used to improve performance?

Methodology

competence Center for Gas Exchange

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>