

Engine After Treatment: Atomization and Mixing of Urea Water Solution

Mireia Altimira, KTH-Mek CCGEx Research Day 2016-10-28

Outline

- Research questions
- Spray pre-study
- Numerical simulations
- Experimental measurements
- Research answers

Research questions

- 1. How much do the initial spray characteristics affect evaporation and mixing? Why?
- 2. How much does the exhaust gas flow affect evaporation, mixing properties, and wall-film formation? Why?
- 3. Simulations offer better flexibility and cost efficiency but
 - How reliable are they? Can we achieve proper experimental validation?
 - How sensitive are they to the different models and necessary simplifications?
- 4. What is the potential of this particular topic? Strategic interest for industrial partners and CCGEx?

Pre-study: Injection Strategies

• IS1: Constant injection duration + controlled frequency

	OP0	OP1	OP2
Exhaust gas temperature (°C)	228	304	340
Exhaust mass flow rate (kg/s)	0.0144	0.0306	0.0467
Mean Gas velocity (m/s)	6.18	15.04	24.41
SCR backpressure (rel) (Pa)	25	135	360
AdBlue mass flow rate (mg/s)	3.0	12.4	28.8
Injection duration (ms)	5	5	5
Injection mass flow rate (kg/s)	0.00110	0.00110	0.00110
Injection frequency (Hz)	0.548	2.260	5.243
Interval between injections (s)	1.821	0.438	0.186
Duty Cycle	0.27%	1.13%	2.62%

• IS2: Constant frequency + controlled injection duration

	OP1	OP2a	OP2b	OP2c	OP3a	OP3b	OP3c	OP4a	OP4b	OP4c
Exhaust mass flow rate (kg/h)	0	400	400	400	800	800	800	1600	1600	1600
Outlet temperature (°C)	ambient	200	300	400	200	300	400	200	300	400
Gas density (kg/m3)	1.210	0.747	0.616	0.576	0.747	0.616	0.576	0.747	0.616	0.576
Mean Gas velocity (m/s)	0.00	13.16	15.94	17.05	26.32	31.88	34.10	52.64	63.75	68.20

	INJ1	INJ2	INJ3	INJ4
Injection mass flow rate (kg/s)	0.083	0.417	1.667	3.25
Injection frequency (Hz)	1	1	1	1
Duty Cycle	3%	13%	51%	100%

Droplet breakup

D< 400µm + mean gas velocities = droplets will be subject to vibrational breakup

Droplets > 30-40 μ m will not follow the exhaust flow streamlines -especially in regions of acceleration or deceleration of the flow

• Droplet residence time

time UWS droplets have to evaporate as much water as possible, and get ready to react with the exhaust NOx

Droplet lifetime

time water droplets would need to evaporate

Pre-study: Injection strategy

Interaction between injection pulses

- Duty cycle IS1 < 3%
- Duty cycle IS2 = **3 -100%**

Results from Nygård et al (2016), KTH Mechanics

Pre-study: Sub-model sensitivity

Case DPM-Turbulence Yes No		l	Droplet breakup					
		Diffusive	Convective/diffusive	SSD	Wave	KHRT	TAB	
1	х		Х					
2		x	х					
3	x		х		x			
4	x			х	х			
5	x			×		×		
6	X			х			x	
7	х			х				×

Numerical simulations

	Case	Mass flow [kg/h]	Temperature [C]
No cross flow	1a	0	20
	2a	400	200
Mild cross flow	2b	400	300
	2c	400	400
High cross flow	4a	1400	200
	4b	1400	300
	4c	1400	400

Mean diameter = 34 µm Initial velocity 25 m/s Cone angle = 50 degrees Mass flow rate = 195 g/min 200 000 particle parcels/second

Numerical simulations

	Case	Mass flow [kg/h]	Temperature [C]
No cross flow	1a	0	20
Mild cross flow	2a	400	200
	2b	400	300
	2c	400	400
High cross flow	4a	1400	200
	4b	1400	300
	4c	1400	400

Numerical simulations

	Case	Mass flow [kg/h]	Temperature [C]
No cross flow	1a	0	20
Mild cross flow	2a	400	200
	2b	400	300
	2c	400	400
High cross flow	4a	1400	200
	4b	1400	300
	4c	1400	400

Numerical simulations: Crossflow effects

• Droplet size (left) and velocity (right) number averaged distribution along probe lines.

Numerical simulations: Temperature effects

 Droplet size (left) and velocity (right) number averaged distribution along x/D = 2.

Numerical simulations: Evaporation

 Droplet mass flow rate through cross-planes (solid line) and residence time (dashed line). Sensitivity to crossflow (left) and gas temperature (right).

Experimental measurements

- Droplet size and velocity distribution
- Variation with injection distance

Experimental measurements

• Droplet size pdf (μ m) – no crossflow

Experimental measurements

Droplet velocity pdf (m/s) – no crossflow

Research answers #1, 2

- UWS droplets have a short time to evaporate as much water as possible, so the smaller the droplets, the better.
- Very short injections with high instantaneous UWS flow rates = Large number of droplets impacting on the walls.
- Pressure transients and interaction between injection pulses will have a strong impact on breakup, especially with a large duty cycle.
- At high operating temperatures, the evaporation rate slowly increases with temperature, but this benefit is cancelled by the increase in exhaust gas velocity.
- Droplet residence time is more important than temperature, within the operating range considered.

Research answers #3

- **Droplet velocity** is quite **insensitive** to the additional models adopted for breakup, evaporation and turbulence.
- Neither droplet size nor velocity are sensitive to the choice of model for evaporation.
- Not including a DPM-turbulence model negatively affects droplet size and velocity.
- The combination of models that provides better agreement with the experiments is: **WAVE breakup model, DPMturbulence interaction, Convective evaporation**.
- Use of realistic spray boundary conditions (size and velocity) is needed.

Research answers #4

Experimental side

- Unique possibility to obtain this kind of measurements
- Results database available for validation of numerical simulations
- Creation of an industrial standard for SCR experiments
- Numerical side
 - **Deeper insight** into the breakup and mixing mechanisms
 - Scientific relevance through study of pulse interaction in cone sprays
 - Potential for improvement through novel CFD optimization packages

Thank you for your attention!

Experimental measurements: PDPA (Phase Doppler Particle Analyzer)

Dantecdynamics.com

- Simultaneous measurement of droplet size and velocities
- Principles
 - Particle scatters light from two laser beams
 - Scattered light received by a multi-detector probe
 - Phase shift between signals proportional to particle size
 - Doppler frequency dependent on particle velocity

Pre-study: Sub-model sensitivity

¹Iannantuoni, et al. (2013). "Validation and Assessment of Water Mist Multihole Nozzle Model for Fire Simulations"

Experimental measurements: start up

- 04/28: test cell arrives at ICE lab
- 05/11: connection of the dosing unit
- 05/27: first PDPA measurements without gas flow
- 09/15: first run with exhaust gas crossflow
- 10/13: first PDPA measurements with gas crossflow

