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 How the turbine performance (e.g. pressure ratio, power) affected by 

heat transfer?

What are the mechanisms of heat transfer related losses and how 

can we quantify them? 

 How the upstream exhaust manifolds and flow instabilities affect 

heat transfer and turbine performance?

 How different exhaust valve strategies affects the heat transfer and 

turbine performance?
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OBS: 

We are predicting the pressure, 

not specifying as boundary conditions.

Energy Balance Analysis

 Turbine power is sensitive to 

heat loss.

 Pressure ratio is relatively 

insensitive to heat loss.

 Energy balance’s drawback: 

unable to quantify the 

mechanisms of heat transfer 

related losses.

Adiabatic

 𝑸𝒕 =  𝑸𝒊  𝑾𝑻 =  

𝑺𝒘𝒉𝒆𝒆𝒍

𝒓 × 𝒇 ∙ 𝝎 𝒅𝑺
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Overall Exergy Budget

Total exergy /availability
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𝑺𝒊
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exergy through heat flow 

and thermal entropy 

generation.

 Potential to harvest more 

exergy as useful work.
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Conclusions

 Turbine power is sensitive, but pressure ratio is relatively insensitive to 

heat loss.

 Possible to quantify heat transfer related losses by using Exergy

approach.

 Potential to harvest more exergy as useful work in the system (engine-

like pulsating flow scenario). 

Optimum exhaust valve strategy 

Turbine design
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 Extend exergy analysis on turbine operating under engine-like 

pulsating conditions to assess upstream exhaust manifolds and flow 

instabilities on heat transfer and performance. 

 Explore different exhaust valve strategy (e.g. pulse shape, frequency, 

amplitude) for better utilization of exhaust gas flow exergy. 

Future work

Example: nengine=1500 rpm
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