
”Charging for the future”

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

http://www.ccgex.kth.se/


KTH ROYAL INSTITUTE

OF TECHNOLOGY

Flow Exergy Analysis of a 
Turbocharger Radial Turbine
Shyang Maw Lim
Supervisors: Mihai Mihaescu, Anders Dahlkild, 

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

Christophe Duwig, Laszlo Fuchs

http://www.ccgex.kth.se/


 How the turbine performance (e.g. pressure ratio, power) affected by 

heat transfer?

What are the mechanisms of heat transfer related losses and how 

can we quantify them? 

 How the upstream exhaust manifolds and flow instabilities affect 

heat transfer and turbine performance?

 How different exhaust valve strategies affects the heat transfer and 

turbine performance?
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Computational Setup

Total temperature

Mass flow rate

Atmospheric pressure

 ~ 9 millions polyhedral cells

 Y+~1

 SST k-ω Detached Eddy 

Simulation (DES)

Wheel rotation: Sliding mesh



OBS: 

We are predicting the pressure, 

not specifying as boundary conditions.

Energy Balance Analysis

 Turbine power is sensitive to 

heat loss.

 Pressure ratio is relatively 

insensitive to heat loss.

 Energy balance’s drawback: 

unable to quantify the 

mechanisms of heat transfer 

related losses.

Adiabatic

 𝑸𝒕 =  𝑸𝒊  𝑾𝑻 =  

𝑺𝒘𝒉𝒆𝒆𝒍

𝒓 × 𝒇 ∙ 𝝎 𝒅𝑺
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Overall Exergy Budget

Total exergy /availability
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generation.
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 Turbine power is sensitive, but pressure ratio is relatively insensitive to 

heat loss.

 Possible to quantify heat transfer related losses by using Exergy

approach.

 Potential to harvest more exergy as useful work in the system (engine-

like pulsating flow scenario). 

Optimum exhaust valve strategy 

Turbine design
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 Extend exergy analysis on turbine operating under engine-like 

pulsating conditions to assess upstream exhaust manifolds and flow 

instabilities on heat transfer and performance. 

 Explore different exhaust valve strategy (e.g. pulse shape, frequency, 

amplitude) for better utilization of exhaust gas flow exergy. 

Future work

Example: nengine=1500 rpm
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