

competence Center for Gas Exchange Competence Center for Gas Exchange

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>

KTH ROYAL INSTITUTE OF TECHNOLOGY

Pressure Ratio Influence on Exhaust Valve Flow Coeffcients

Ted Holmberg

CCGEx at the Royal Institute of Technology (KTH) • www.ccgex.kth.se

- 1-D modelling assumption of constant exhaust valve C_F found to be questionable
- 1-D modelling assumption of similar C_F behavior of single and twin valves found to be questionable

 Conclusions from draft "17PFL-0905" submitted for SAE world congress

Introduction

• 1-D description of flow losses over the valve and port

• Flow coefficient

$$C_F = \frac{A_{throat}}{A_{ref}}$$

 A_{ref} = Exhaust Port Outlet Area

Introduction

 Common assumption of insignificant influence of pressure ratio (p_{cyl}/p_{port}) on the flow coefficient C_F

Experimental study of pressure ratio on the flow coefficient C_F

Experimental setup

Cases

• Valve geometry and valve seat angle (45° and 30°)

• Case summary

Case	A1	A2	B1	B2
Cylinder head	A		В	
Valve seat angle	45°		30°	
Valve seat inner diameter	35mm		35.5mm	
Cylinder bore	127mm		130mm	
No. exhaust valves	1	2	1	2

Adapted from Semlitsch et al. "Flow effects due to valve and piston motion in an internal combustion engine exhaust port"

Results – single valve

• 45° valve seat angle

Results – single valve

• 30° valve seat angle

Results – Comparison single valve

- 1-D modelling assumption of constant exhaust valve C_F found to be questionable
 - Pressure ratio influence the C_F C_F varies with geometry

10

Results – Comparison single vs twin valve Twin valve Single valve 0.9 0.9 0.8 0.8 0.7 0.7 ÷ 0.6 - 0.6 45° coefficient C 0.5 Flow coefficient C 0.5 C_F PR 0.4 0.4 Flow 0.3 0.3 PR 1.1 PR 1.2 PR 1.2 0.2 0.2 PR 1.4 PR 1 4 PR 1.6 PR 1.8 0.1 0.1 PR 1.8 PR 2.0 PR 2.0 0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 ÷ 0.6 30° $C_{F} \uparrow PR \uparrow$ coefficient C 0.5 Flow coefficient C 0.5 0.4 0.4 _lo 0.3 0.3 PR 1.1 PR 1.1 PR 1.2 PR 1.2 0.2 0.2 PR 1.4 PR 1.4 PR 1.6 PR 1.6 0.1 PR 1.8 0.1 PR 1.8 PR 2.0 PR 2.0 0 2 10 12 14 16 0 10 12 14 16 6 8 6 8 Valve lift [mm] Valve lift [mm]

- 1-D modelling assumption of similar behavior of single and twin valves found to be questionable
 - A single valve behaves differently than twin valves •

Conclusions

- 1-D modelling assumption of constant exhaust valve C_F found to be questionable
 - Pressure ratio influence the C_F
 - C_F varies with geometry
- 1-D modelling assumption of similar behavior of single and double valves found to be questionable
 - A single valve behaves differently than twin valves

 Conclusions from draft "17PFL-0905" submitted for SAE world congress

• Questions?

competence Center for Gas Exchange Competence Center for Gas Exchange

"Charging for the future"

CCGEx at the Royal Institute of Technology (KTH) • <u>www.ccgex.kth.se</u>