

Gas Dynamics of Exhaust Valves

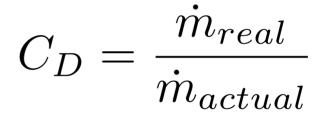
Marcus Winroth, Henrik Alfredsson, Ramis Örlü

KTH - CCGEx

- Background and objectives
- Experimental setup and techniques
- Early results and conclusions

Background

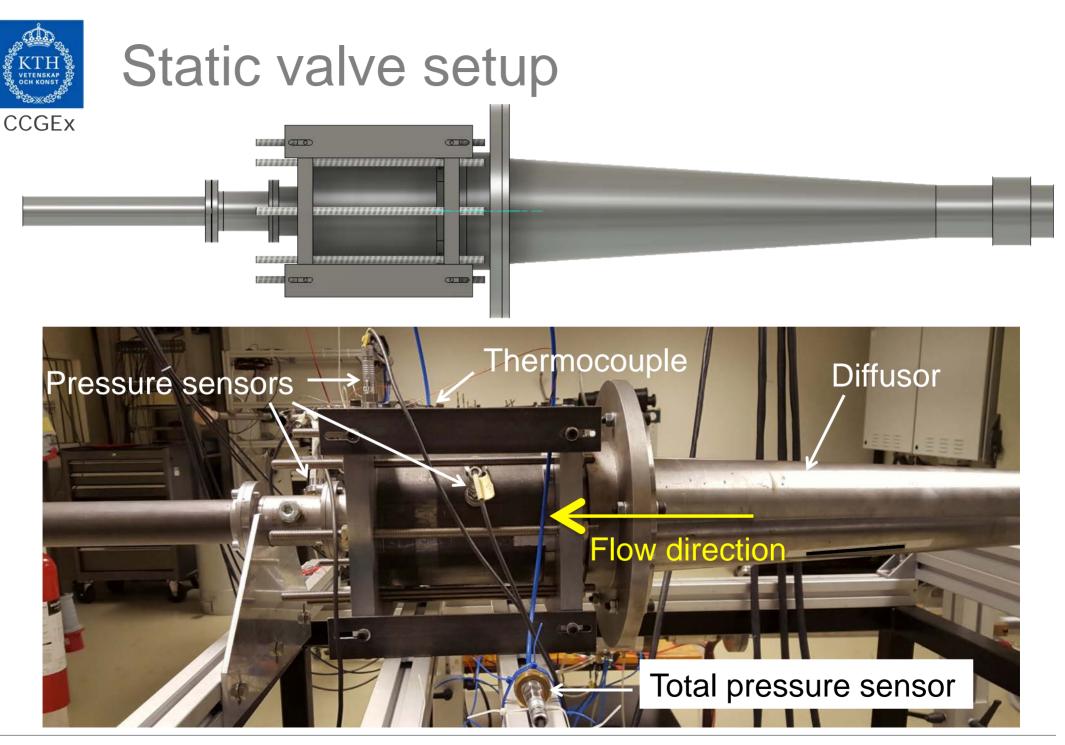
- Semi empirical 1D models used for optimization of engine system
- Discharge coefficient



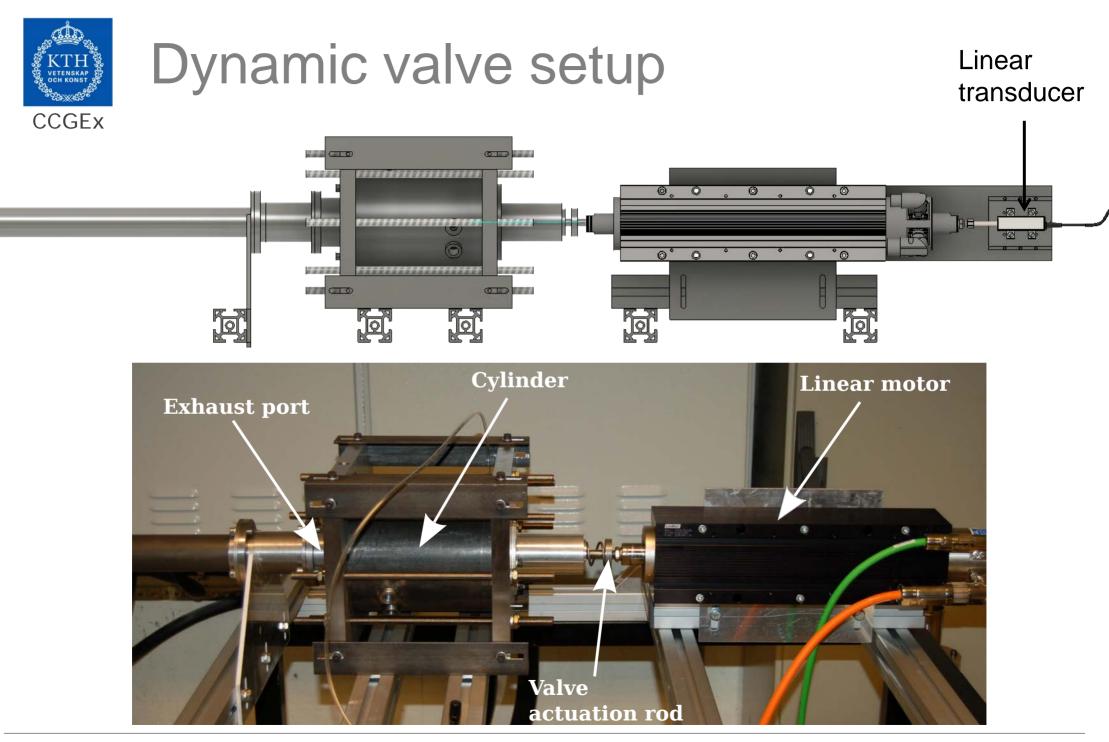
- Measurements of C_D today:
 - Fixed valve lift (assuming quasi steady)
 - Low pressure ratios (assuming pressure ratio independence)
 - Typical experiments performed in industry have a maximum
 M ≈ 0.3 (incompressible)

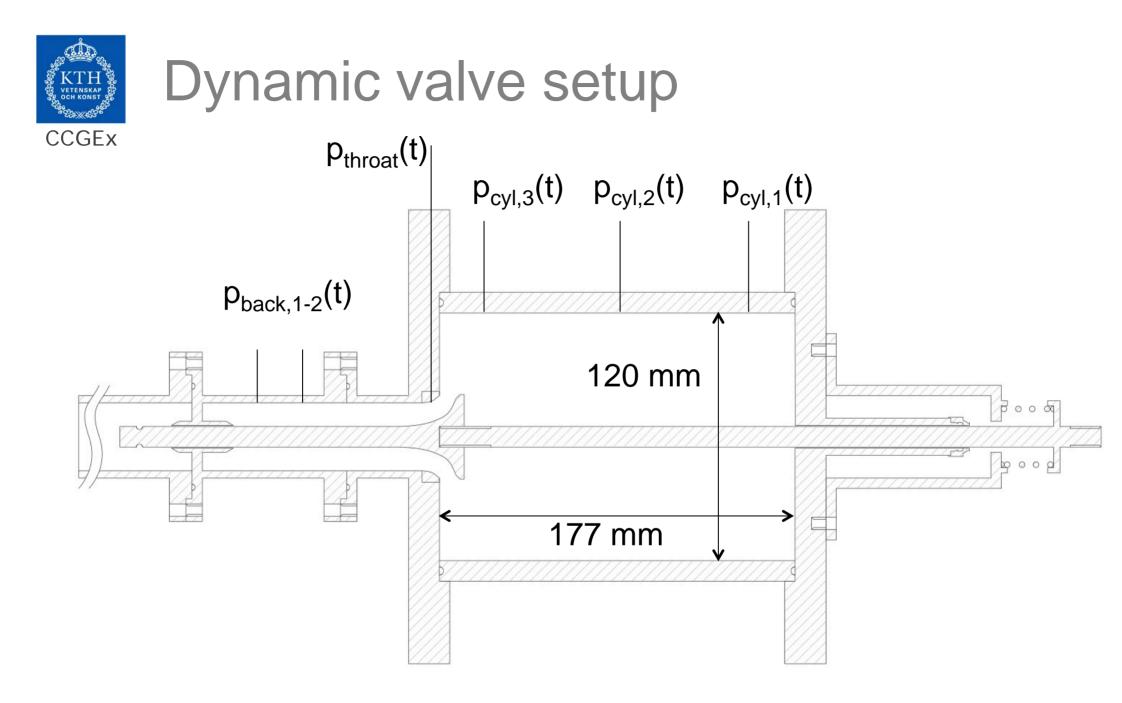
Experimentally test the effects of:

- Quasi-steady valve assumption
- High pressure ratio
- Radial positioning of the valve
- Interaction of two valves
- Valve opening profiles
- Exhaust port geometry

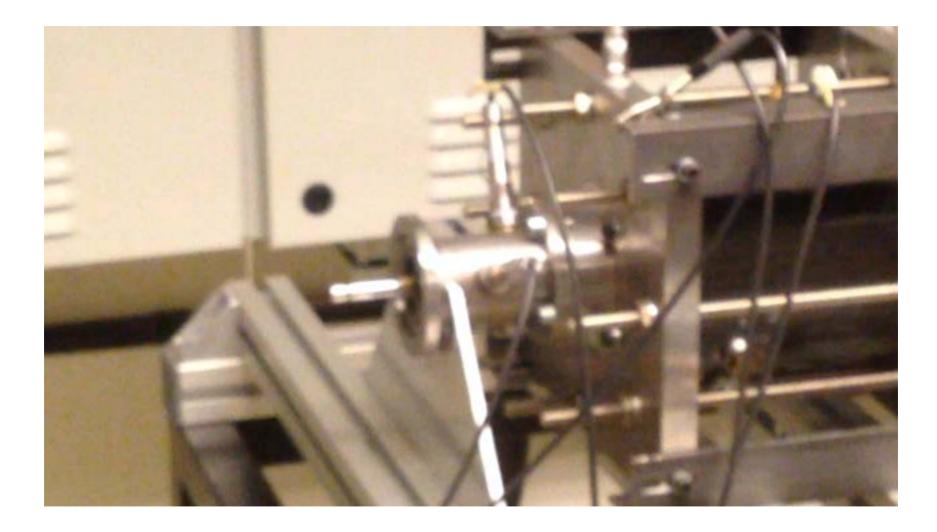


KTH - CCGEx





Dynamic valve setup



$$C_D = \frac{\dot{m}_{actual}}{\dot{m}_{ideal}}$$

Using the isentropic relations, the Mach number and conservation of mass flow gives for sub-critical flows:

$$\dot{m}_{ideal} = \frac{A_T p_0}{\sqrt{RT_0}} \left(\frac{p_T}{p_0}\right)^{\frac{1}{\gamma}} \left\{\frac{2\gamma}{\gamma-1} \left[1 - \left(\frac{p_T}{p_0}\right)^{\frac{\gamma-1}{\gamma}}\right]\right\}^{\frac{1}{2}}$$

 $A_T - Throat area$ $p_T - Throat pressure$ $p_0 - Cylinder total pressure$ $\gamma - Ratio of specific heats$ R - Specific gas constant 1

$$C_D = \frac{\dot{m}_{actual}}{\dot{m}_{ideal}}$$

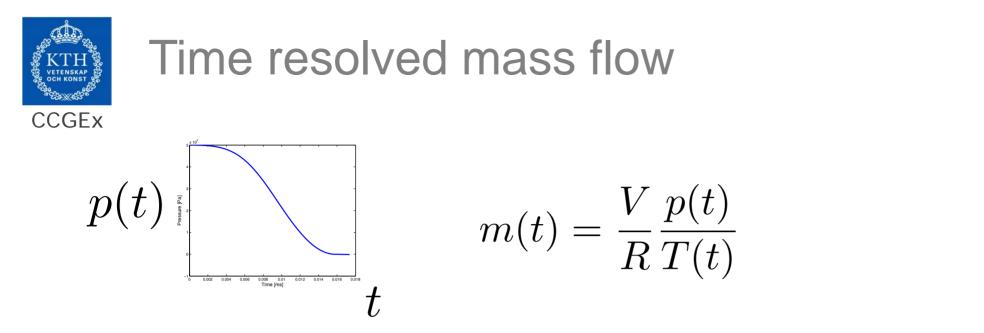
Using the isentropic relations, the Mach number and conservation of mass flow gives for sub-critical flows:

$$\dot{m}_{ideal} = \frac{A_T p_0}{\sqrt{RT_0}} \left(\frac{p_T}{p_0}\right)^{\frac{1}{\gamma}} \left\{\frac{2\gamma}{\gamma-1} \left[1 - \left(\frac{p_T}{p_0}\right)^{\frac{\gamma-1}{\gamma}}\right]\right\}^{\frac{1}{2}}$$

While for chocked conditions:

$$\dot{m}_{ideal} = \frac{A_T p_0}{\sqrt{RT_0}} \gamma^{1/2} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$$

1



The expansion in the cylinder may be viewed as isentropic, hence

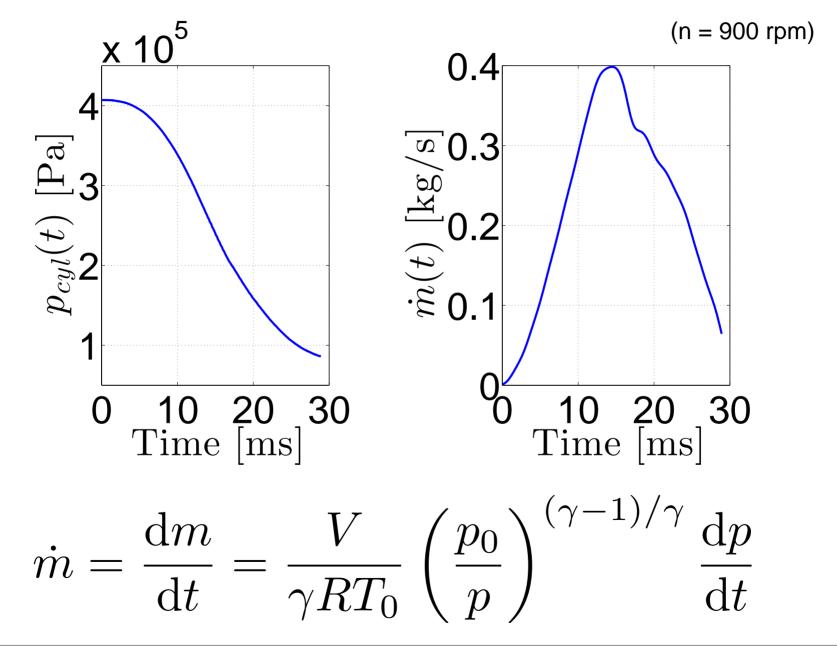
$$\frac{p}{p_0} = \left(\frac{T}{T_0}\right)^{\gamma/(\gamma-1)}$$

which gives

$$\frac{p}{T} = T_0^{-1} p_0^{(\gamma - 1)/\gamma} p^{1/\gamma} = C p^{1/\gamma}$$

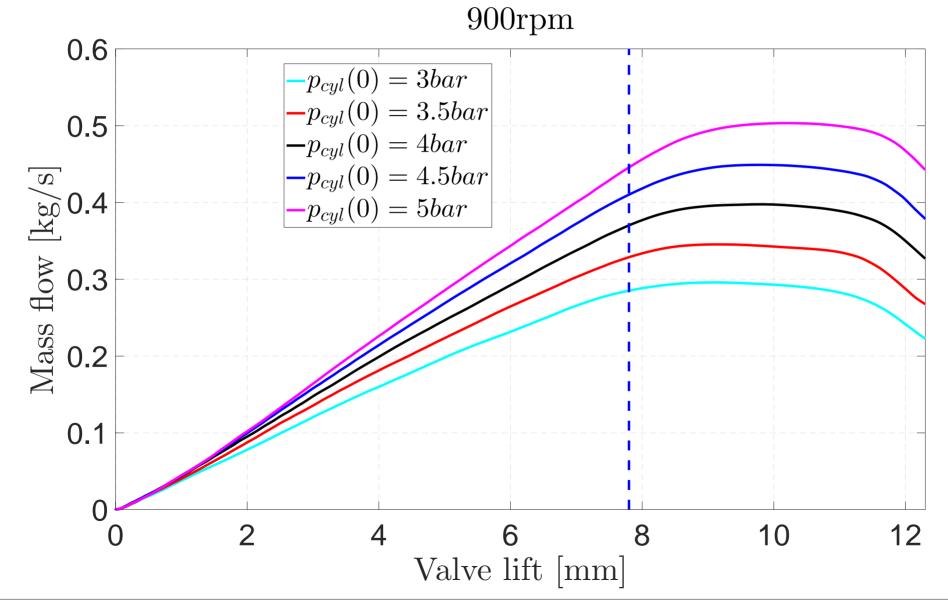
Meaning it is sufficient to measure p(t) and T(t=0) to obtain the mass flow.

Time resolved mass flow

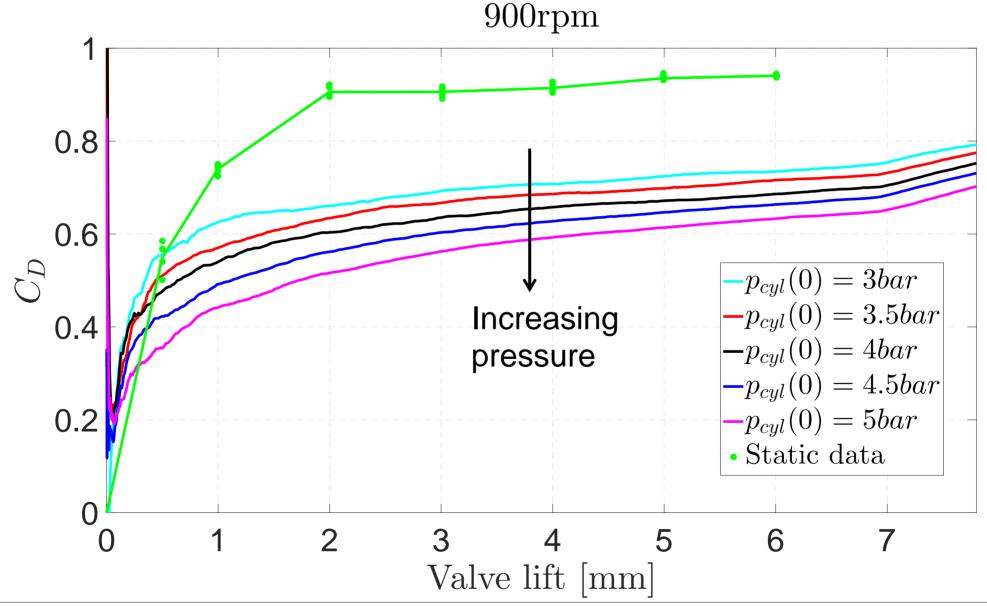


Mass flow @ 900 rpm

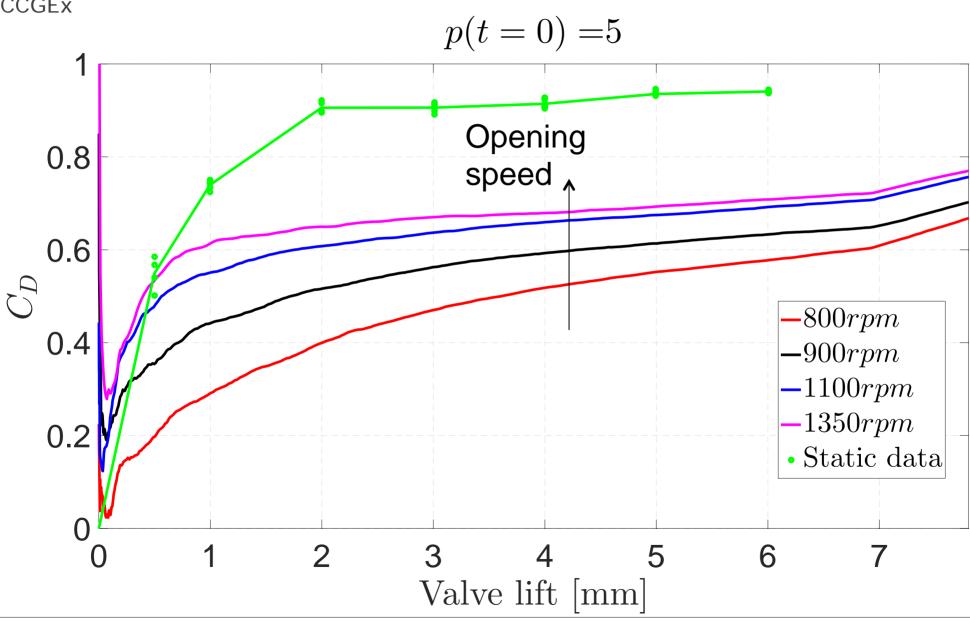
CCGEx

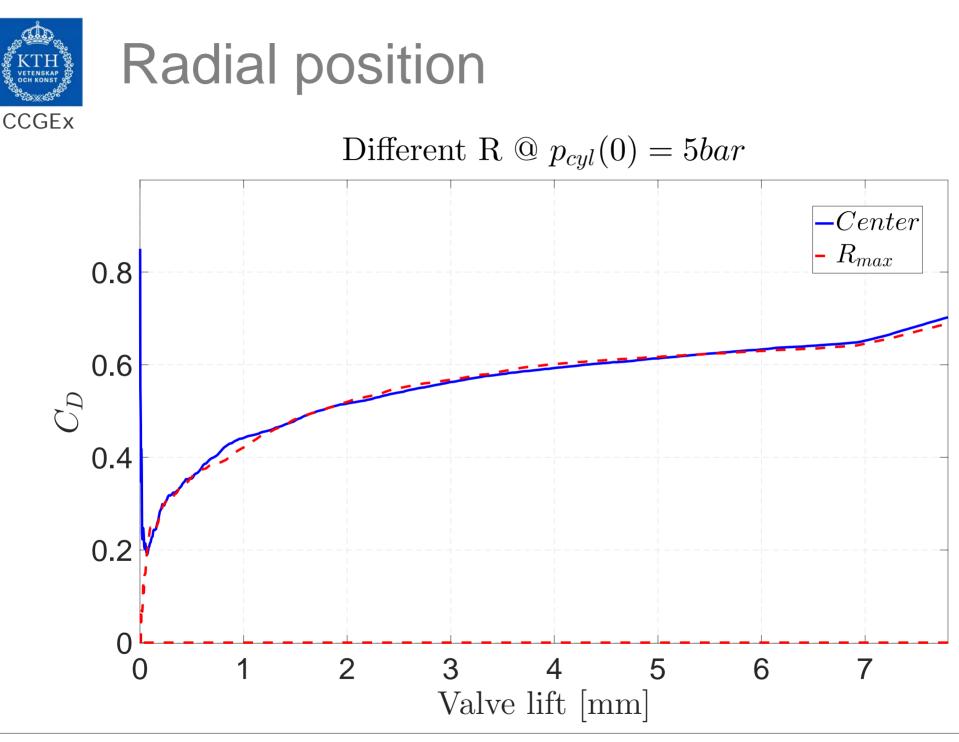


C_D @ 900 rpm



 $C_D @ p(0) = 5bar$





Initial conclusions

- Assumption of pressure ratio independence:
 - Increasing the pressure ratio decreases the C_D-value
 - The static measurements of C_D seems relatively insensitive to pressure ratio
- The quasi-steady assumption:
 - Strong temporal effects
 - Faster opening leads to a higher C_D
 - Faster opening leads to a faster increase C_D
 - Static measurements over predicts the value of C_D
- C_D appears to be insensitive to radial position of the valve

Future work

- Test the effect of:
 - double valve combination (on going)
 - different valve opening profiles
 - different exhaust pipe geometries

Thank you for your attention!

