

Gas dynamics of exhaust valves

Marcus Winroth, Henrik Alfredsson, Ramis Örlü

KTH - CCGEx

Outline

- Background
- Experimental design
- Preliminary results
- Future work

Background – flow over exhaust valves

• Discharge coefficient

- Measurements of C_D today:
 - Fixed valve lift
 - Low pressure ratios
 - Typical experiments performed in industry have a maximum $M \approx 0.3$ (incompressible)
- LES simulations by Y. Wang show
 - Large pressure ratio dependence on C_D

Experimentally test the effects of:

- High pressure ratio (including choked flow conditions)
- Quasi-steady valve assumption
- Radial positioning of the valve
- Interaction of two valves
- Exhaust port geometry

The expansion in the cylinder may be viewed as isentropic, hence

$$\frac{p}{p_0} = \left(\frac{T}{T_0}\right)^{\gamma/(\gamma-1)}$$

which gives

$$\frac{p}{T} = T_0^{-1} p_0^{(\gamma - 1)/\gamma} p^{1/\gamma} = C p^{1/\gamma}$$

Meaning it is sufficient to measure p(t) and T(t=0) to obtain the mass flow.

Time resolved mass flow

CCGEx

Valve dynamics

Valve dynamics

KTH - CCGEx

Valve dynamics

Pressure ratio dependence

Discharge coefficient (constant reference area)

Pressure ratio dependence

Future work

- Dynamic valve experiments at
 - different pressure ratios @ different valve opening speeds
 - different radial position of the valve
 - different pressure ratios @ different radial position of the valve
 - different valve lift profiles
 - different exhaust pipe geometries
 - two-valve combination
- Static valve measurements using the CICERO flow facility
- Compare the mass-flow results with the vortex-shedding flow meter

Thank you!