Skip to main content
To KTH's start page To KTH's start page

On particle number reduction in the exhaust gases for automotive applications

Time: Tue 2018-10-30 10.00 - 13.00

Location: Q34(Osquldas väg 6B, Q-huset, floor 3, KTH Campus)

Participating: Ghulam Majal

Export to calendar

The thesis can be downloaded here .

Abstract:

Particulate emissions from road transportation are known to have an adverse impact on human health as well the environment. As the effects become more palpable, stricter legislation have been proposed by regulating bodies. This puts forward a challenge for the automotive industry to develop after treatment technologies to fulfil the progressively stricter legislation. At present, the most common after-treatment technologies used for particulates are the diesel and gasoline particulate filters. The typical size distribution of the particles is such that the smallest particles in terms of size are in numbers the largest, although they are not influencing the total particle mass significantly. The most recent legislation have included restrictions on the particle number as well as particle mass. In this thesis numerical tools for studying the transport and interaction of particles in an exhaust flow are evaluated. The specific application is particle agglomeration as a mean to reduce the number of particles and manipulate the size distribution. As particles agglomerate the particle number distribution is shifted and larger sized agglomerates of particles are created reducing the number of ultra-fine particles. The particle agglomeration is obtained by forcing sudden acceleration and deceleration of the host gas carrying the particles by variations in the cross sectional areas of the geometry it is passing through. Initially, a simplified one dimensional model is utilized to assess the governing parameters of particle grouping. Grouping here means that the particles form and are transported in groups, thus increasing the probability for agglomeration. The lessons learned from the 1D-model are also used to design the three dimensional geometry: an axisymmetric corrugated pipe. Two different geometries are studied, they both have the same main pipe diameter but different diameter on the corrugations. The purpose is to find the potential onset of flow instabilities and the influence of 3D-effects such as recirculation on the agglomeration. The CFD simulations are performed using DES methodology. First the simulations are run without particles in a non pulsatile flow scenario. Later particles are added to the setup in a one way coupled approach (no particle-particle interaction). The main results were: 1) An additional criterion for grouping to the ones given in previous work on the 1D model is proposed. It is found that grouping is more likely if the combination of the pulse frequency and geometric wavelength is large. Furthermore, smooth pulse forms (modelling the modulation in the flow due to the geometry) yielded more grouping than other more abrupt pulse shapes. However, idealised inlet pulses underestimate the extent of grouping compared to actual engine pulses. 2) For the geometry with larger maximum cross sectional area stronger flow separation was observed along with higher turbulent kinetic energy. 3) Particles were added in the flow field and a reduction in the particle count was observed in the initial simulations for particles going from the first corrugated segment to the last. Natural extensions of the present work would be to consider pulsatile flow scenarios, particle-particle interaction and a polydisperse setup for the particles